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Organic Photochemistry with 6.7-eV Photons: 
Bicyclo[4.1.0]hept-3-ene. Internal Transfer and 
Carryover of Electronic Energy 

Sir: 

In studies on the solution-phase photochemistry at 185 nm 
of cyclic monoolefins13 and cyclic diolefins (both conjugated4 

and unconjugated5), it was found that the lifetimes of the 
electronically excited state that was involved were too short 
to promote bimolecular processes in which an electronically 
excited molecule was a reactant. Even intramolecular transfer 
of electronic energy was not observed to influence the photo­
chemistry of a compound such as 4-vinylcyclohexene.5 In more 
rigid bichromophoric molecules such as 1, an internal [2 + 2] 
addition is a major reaction at 185 nm,5 but this may not be 
related to an actual transfer of electronic energy between the 
double bonds. In this communication, results on the photo­
chemistry of bicyclo[4.1.0]hept-3-ene (2, hereafter BCH) at 
185 nm are reported. These demonstrate that the incident 
photon is most probably absorbed by the 7r bond while the re­
actions that are observed are mostly those of the cyclopropyl 
group. 
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The ring system 2 is incorporated in numerous compounds 

which were studied by Prinzbach and his co-workers.6 Typi­
cally, they found that 3 on triplet sensitization gave 4 as a 
major product. This reaction can be duplicated at 185 nm in 
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Figure 1. Ultraviolet absorption spectra of bicyclo[4.1.0]hept-2-ene and 
model compounds. Spectrum of cyclohexene was taken in hexane,8 the 
rest in pentane. 

Table I. Photolysis of Bicyclo[4.1.0]hept-3-ene in Solution 
(Solvent, Pentane; Concn, 2 X 10~2 M; Time, 30 Min) 

Product 

8(a + b) 12 unknown 

/ 

CH 

H2C
 NCH 

HC CH 

H,C CH, 

Yield ' 

8.3 36.1 16.7 30.6 83 

% Conversion 

w.r.t. starting 

material 

16.8 

" W. Kirmse and K. Pohlmann, Chem. Ber., 100, 3564 (1967). 
* Consisted of 1:2 transxis. c Identified by comparison with authentic 
material. d E. A. Hill, R. J. Theissen, C. E. Cannon, R. Miller, R. B. 
Guthrie, and A. T. Chen,/ Org. Chem., 41, 1191 (1976). 

the solution-phase irradiation of 5 which gives a nearly quan­
titative yield of 6.7 These observations will be referred to 
later. 

The solution-phase ultraviolet spectrum of a highly purified 
sample of BCH is shown in Figure 1 along with the spectra of 
cyclohexene8 and bicyclo[4.1.0]heptane.9 The resemblance 
between the spectra of the first two compounds and the absence 
of any feature that would be indicative of any mixing between 
the excited states of the olefin and cyclopropyl groups is 
noteworthy. Of course, this does not prove the absence of such 
an interaction. 

Photolysis of BCH in pentane solution10 gave five isomeric 
products in significant yield which together accounted for 92% 
of the material that disappeared. The identities of the products 
and relevant kinetic data are given in Table I." The remaining 
8% was made up of three products which were not identified. 
The mass balance was 100% within the experimental uncer­
tainty (±5%) up to 16% conversion, but beyond that point 
secondary photolysis of the initial products was evident. The 
rate of disappearance of the reactant was 1.2 (±0.2) relative 
to the rate of cis —• trans isomerization of cyclooctene.2 

The formation of 7 from BCH is a typical reaction of the 
cyclohexene ring in solution phase photochemistry at 185 
n m i,3,i2 j t c a n J56 represented to proceed via a carbene inter­
mediate (eq 1). 1,3,6-Heptatriene and 1,4-cycloheptadiene are 
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the expected products of the irradiation of a bicyclo[«.1.0]-
alkane at 185 nm.9 Thus formal cleavage of one and two bonds 
of the cyclopropane ring in BCH can be represented as shown 
in eq 2 and 3. The origin of bicyclo[4.1.0]hept-2-ene is of 

hv (2) 

a 
considerable interest. It can come directly from BCH by a 
1,3-H migration (eq 4), but such a process has not been ob­
served in the photochemistry of cyclohexene itself.13 It is more 

(4) 

reasonable to assume that it originates in 1,4-cycloheptadiene 
by a di-7r-methane rearrangement. In order to establish this, 
the photolysis of bicyclo[4.1.0]hept-3-ene-7,7-rf2 (H) was 
undertaken. This compound, if it undergoes reactions 2 and 
3, should give 12 and 13, respectively. In an actual experiment, 

O2C= CH-CH 2 

.CH 
H2C = CH-CH 

12 

after 50% conversion of 11, the recovered starting material 
showed no evidence of scrambling of the deuterium. The NMR 
spectrum of the l,3,6-heptatriene-^2 showed 5 2.9 (1.80 H), 
4.7-6.8 (6.20 H). This is consistent with structure 12, con­
sidering that a certain degree of scrambling of deuterium ac­
companies this reaction.9 The NMR spectrum of the 1,4-
cycloheptadiene-rf2 showed 5 2.25 (3.1 H), 2.85 (1.8 H), and 
5.65 (3.1 H) which would agree with structure 13. In the NMR 
spectrum of bicyclo[4.1.0]hept-2-ene obtained from the irra­
diation of 11, the cyclopropyl protons at <5 0.70 integrated to 
2 H so that reaction 4 can be ruled out as the source of this 
product.14 A di-7r-methane rearrangement of 13 would proceed 
as shown in eq 5. If isotope effects are totally excluded, 14a and 

(5a) 

(5b) 

14b would be formed in equal amounts and the NMR spectrum 
of this mixture would have all of the absorptions of 9 but the 
intensities would be 5 6.0-5.0 (1.5 H), 1.85 (3 H), and 
1.40-0.40 (3.5 H). The product that was isolated had ab­
sorption intentities of 1.52, 3.00, and 3.48, respectively.15 A 
detailed analysis of the spectrum at 220 MHz showed that one 
of the deuterium atoms could be placed at the olefinic ab­
sorption at 5 5.45 (C-3) and not at 5 5.90 (C-2) which would 

be in agreement with reaction 5a. 
Two significant conclusions can be drawn from this study. 

These are the following. (1) The cyclopropyl group is the 
preferred reaction site although its absorption is 10-fold weaker 
than that of the olefinic group. It may be naive to look upon 
these two chromophores as being independent centers for the 
absorption of a photon, but it is difficult to assume mixing of 
the two states exists when they are separated by methylene 
groups. The behavior of BCH contrasts with that of the more 
rigid tricyclic molecule, 5. It is conceivable that the flexibility 
of the BCH system is an important factor in the activation of 
the cyclopropyl group. The importance of this result lies in the 
possibilities that it opens jap in far-ultraviolet photochemistry 
by demonstrating that a strongly absorbing chromophore can 
be used to "pump" energy to a reaction site in a molecule much 
as carbonyl groups have been used at longer wavelengths. (2) 
There are two examples here of secondary products being 
formed by the carryover of the excitation energy to the initial 
product. Thus, in the formation of 1,3,6-heptatriene, the cis 
isomer is the logical initial product. However the ratio of cis 
to trans was constant at 2:1 from 1 to 16% conversion which 
showed that the trans was not formed by the secondary pho­
tolysis of the cis compound but from a stereoisomerization 
from a "hot" initial product. The second example is even more 
clear-cut. Bicyclo[4.1.0]hept-2-ene (9) must come from an 
electronically "hot" 1,4-cycloheptadiene since, even at 1% 
conversion of BCH, the ratio of 9 to 10 was the same as at 16% 
conversion. Again, up to 20% conversion, the yield vs. time plots 
for 9 and 10 do not show any departure from linearity which 
would be indicative of the existence of more than one route for 
the formation of 9 (i.e., secondary photolysis of 10). Since di-
7r-methane rearrangements are known to occur only from 
electronically excited states of 1,4-dienes,16 this is almost 
certainly an example of the carryover of electronic excita­
tion. 
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